Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants.

Identifieur interne : 002568 ( Main/Exploration ); précédent : 002567; suivant : 002569

OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants.

Auteurs : Vaibhav Srivastava ; Ogonna Obudulu ; Joakim Bygdell ; Tommy Löfstedt ; Patrik Rydén ; Robert Nilsson ; Maria Ahnlund ; Annika Johansson ; P R Jonsson ; Eva Freyhult ; Johanna Qvarnström ; Jan Karlsson ; Michael Melzer ; Thomas Moritz ; Johan Trygg ; Torgeir R. Hvidsten ; Gunnar Wingsle [Suède]

Source :

RBID : pubmed:24341908

Descripteurs français

English descriptors

Abstract

BACKGROUND

Reactive oxygen species (ROS) are involved in the regulation of diverse physiological processes in plants, including various biotic and abiotic stress responses. Thus, oxidative stress tolerance mechanisms in plants are complex, and diverse responses at multiple levels need to be characterized in order to understand them. Here we present system responses to oxidative stress in Populus by integrating data from analyses of the cambial region of wild-type controls and plants expressing high-isoelectric-point superoxide dismutase (hipI-SOD) transcripts in antisense orientation showing a higher production of superoxide. The cambium, a thin cell layer, generates cells that differentiate to form either phloem or xylem and is hypothesized to be a major reason for phenotypic perturbations in the transgenic plants. Data from multiple platforms including transcriptomics (microarray analysis), proteomics (UPLC/QTOF-MS), and metabolomics (GC-TOF/MS, UPLC/MS, and UHPLC-LTQ/MS) were integrated using the most recent development of orthogonal projections to latent structures called OnPLS. OnPLS is a symmetrical multi-block method that does not depend on the order of analysis when more than two blocks are analysed. Significantly affected genes, proteins and metabolites were then visualized in painted pathway diagrams.

RESULTS

The main categories that appear to be significantly influenced in the transgenic plants were pathways related to redox regulation, carbon metabolism and protein degradation, e.g. the glycolysis and pentose phosphate pathways (PPP). The results provide system-level information on ROS metabolism and responses to oxidative stress, and indicate that some initial responses to oxidative stress may share common pathways.

CONCLUSION

The proposed data evaluation strategy shows an efficient way of compiling complex, multi-platform datasets to obtain significant biological information.


DOI: 10.1186/1471-2164-14-893
PubMed: 24341908
PubMed Central: PMC3878592


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants.</title>
<author>
<name sortKey="Srivastava, Vaibhav" sort="Srivastava, Vaibhav" uniqKey="Srivastava V" first="Vaibhav" last="Srivastava">Vaibhav Srivastava</name>
</author>
<author>
<name sortKey="Obudulu, Ogonna" sort="Obudulu, Ogonna" uniqKey="Obudulu O" first="Ogonna" last="Obudulu">Ogonna Obudulu</name>
</author>
<author>
<name sortKey="Bygdell, Joakim" sort="Bygdell, Joakim" uniqKey="Bygdell J" first="Joakim" last="Bygdell">Joakim Bygdell</name>
</author>
<author>
<name sortKey="Lofstedt, Tommy" sort="Lofstedt, Tommy" uniqKey="Lofstedt T" first="Tommy" last="Löfstedt">Tommy Löfstedt</name>
</author>
<author>
<name sortKey="Ryden, Patrik" sort="Ryden, Patrik" uniqKey="Ryden P" first="Patrik" last="Rydén">Patrik Rydén</name>
</author>
<author>
<name sortKey="Nilsson, Robert" sort="Nilsson, Robert" uniqKey="Nilsson R" first="Robert" last="Nilsson">Robert Nilsson</name>
</author>
<author>
<name sortKey="Ahnlund, Maria" sort="Ahnlund, Maria" uniqKey="Ahnlund M" first="Maria" last="Ahnlund">Maria Ahnlund</name>
</author>
<author>
<name sortKey="Johansson, Annika" sort="Johansson, Annika" uniqKey="Johansson A" first="Annika" last="Johansson">Annika Johansson</name>
</author>
<author>
<name sortKey="Jonsson, P R" sort="Jonsson, P R" uniqKey="Jonsson P" first="P R" last="Jonsson">P R Jonsson</name>
</author>
<author>
<name sortKey="Freyhult, Eva" sort="Freyhult, Eva" uniqKey="Freyhult E" first="Eva" last="Freyhult">Eva Freyhult</name>
</author>
<author>
<name sortKey="Qvarnstrom, Johanna" sort="Qvarnstrom, Johanna" uniqKey="Qvarnstrom J" first="Johanna" last="Qvarnström">Johanna Qvarnström</name>
</author>
<author>
<name sortKey="Karlsson, Jan" sort="Karlsson, Jan" uniqKey="Karlsson J" first="Jan" last="Karlsson">Jan Karlsson</name>
</author>
<author>
<name sortKey="Melzer, Michael" sort="Melzer, Michael" uniqKey="Melzer M" first="Michael" last="Melzer">Michael Melzer</name>
</author>
<author>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
</author>
<author>
<name sortKey="Trygg, Johan" sort="Trygg, Johan" uniqKey="Trygg J" first="Johan" last="Trygg">Johan Trygg</name>
</author>
<author>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
</author>
<author>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden. Gunnar.Wingsle@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå</wicri:regionArea>
<wicri:noRegion>SE-90183 Umeå</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24341908</idno>
<idno type="pmid">24341908</idno>
<idno type="doi">10.1186/1471-2164-14-893</idno>
<idno type="pmc">PMC3878592</idno>
<idno type="wicri:Area/Main/Corpus">002370</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002370</idno>
<idno type="wicri:Area/Main/Curation">002370</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002370</idno>
<idno type="wicri:Area/Main/Exploration">002370</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants.</title>
<author>
<name sortKey="Srivastava, Vaibhav" sort="Srivastava, Vaibhav" uniqKey="Srivastava V" first="Vaibhav" last="Srivastava">Vaibhav Srivastava</name>
</author>
<author>
<name sortKey="Obudulu, Ogonna" sort="Obudulu, Ogonna" uniqKey="Obudulu O" first="Ogonna" last="Obudulu">Ogonna Obudulu</name>
</author>
<author>
<name sortKey="Bygdell, Joakim" sort="Bygdell, Joakim" uniqKey="Bygdell J" first="Joakim" last="Bygdell">Joakim Bygdell</name>
</author>
<author>
<name sortKey="Lofstedt, Tommy" sort="Lofstedt, Tommy" uniqKey="Lofstedt T" first="Tommy" last="Löfstedt">Tommy Löfstedt</name>
</author>
<author>
<name sortKey="Ryden, Patrik" sort="Ryden, Patrik" uniqKey="Ryden P" first="Patrik" last="Rydén">Patrik Rydén</name>
</author>
<author>
<name sortKey="Nilsson, Robert" sort="Nilsson, Robert" uniqKey="Nilsson R" first="Robert" last="Nilsson">Robert Nilsson</name>
</author>
<author>
<name sortKey="Ahnlund, Maria" sort="Ahnlund, Maria" uniqKey="Ahnlund M" first="Maria" last="Ahnlund">Maria Ahnlund</name>
</author>
<author>
<name sortKey="Johansson, Annika" sort="Johansson, Annika" uniqKey="Johansson A" first="Annika" last="Johansson">Annika Johansson</name>
</author>
<author>
<name sortKey="Jonsson, P R" sort="Jonsson, P R" uniqKey="Jonsson P" first="P R" last="Jonsson">P R Jonsson</name>
</author>
<author>
<name sortKey="Freyhult, Eva" sort="Freyhult, Eva" uniqKey="Freyhult E" first="Eva" last="Freyhult">Eva Freyhult</name>
</author>
<author>
<name sortKey="Qvarnstrom, Johanna" sort="Qvarnstrom, Johanna" uniqKey="Qvarnstrom J" first="Johanna" last="Qvarnström">Johanna Qvarnström</name>
</author>
<author>
<name sortKey="Karlsson, Jan" sort="Karlsson, Jan" uniqKey="Karlsson J" first="Jan" last="Karlsson">Jan Karlsson</name>
</author>
<author>
<name sortKey="Melzer, Michael" sort="Melzer, Michael" uniqKey="Melzer M" first="Michael" last="Melzer">Michael Melzer</name>
</author>
<author>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
</author>
<author>
<name sortKey="Trygg, Johan" sort="Trygg, Johan" uniqKey="Trygg J" first="Johan" last="Trygg">Johan Trygg</name>
</author>
<author>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
</author>
<author>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden. Gunnar.Wingsle@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå</wicri:regionArea>
<wicri:noRegion>SE-90183 Umeå</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cambium (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Metabolome (MeSH)</term>
<term>Multivariate Analysis (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Proteome (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Superoxide Dismutase (genetics)</term>
<term>Superoxide Dismutase (metabolism)</term>
<term>Systems Biology (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse multifactorielle (MeSH)</term>
<term>Biologie des systèmes (MeSH)</term>
<term>Cambium (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Métabolome (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéome (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Superoxide dismutase (génétique)</term>
<term>Superoxide dismutase (métabolisme)</term>
<term>Transcriptome (MeSH)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Reactive Oxygen Species</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Superoxide dismutase</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cambium</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cambium</term>
<term>Espèces réactives de l'oxygène</term>
<term>Populus</term>
<term>Superoxide dismutase</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Metabolic Networks and Pathways</term>
<term>Metabolome</term>
<term>Multivariate Analysis</term>
<term>Oxidative Stress</term>
<term>Systems Biology</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse multifactorielle</term>
<term>Biologie des systèmes</term>
<term>Métabolome</term>
<term>Protéome</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress oxydatif</term>
<term>Transcriptome</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Reactive oxygen species (ROS) are involved in the regulation of diverse physiological processes in plants, including various biotic and abiotic stress responses. Thus, oxidative stress tolerance mechanisms in plants are complex, and diverse responses at multiple levels need to be characterized in order to understand them. Here we present system responses to oxidative stress in Populus by integrating data from analyses of the cambial region of wild-type controls and plants expressing high-isoelectric-point superoxide dismutase (hipI-SOD) transcripts in antisense orientation showing a higher production of superoxide. The cambium, a thin cell layer, generates cells that differentiate to form either phloem or xylem and is hypothesized to be a major reason for phenotypic perturbations in the transgenic plants. Data from multiple platforms including transcriptomics (microarray analysis), proteomics (UPLC/QTOF-MS), and metabolomics (GC-TOF/MS, UPLC/MS, and UHPLC-LTQ/MS) were integrated using the most recent development of orthogonal projections to latent structures called OnPLS. OnPLS is a symmetrical multi-block method that does not depend on the order of analysis when more than two blocks are analysed. Significantly affected genes, proteins and metabolites were then visualized in painted pathway diagrams.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The main categories that appear to be significantly influenced in the transgenic plants were pathways related to redox regulation, carbon metabolism and protein degradation, e.g. the glycolysis and pentose phosphate pathways (PPP). The results provide system-level information on ROS metabolism and responses to oxidative stress, and indicate that some initial responses to oxidative stress may share common pathways.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The proposed data evaluation strategy shows an efficient way of compiling complex, multi-platform datasets to obtain significant biological information.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24341908</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>07</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants.</ArticleTitle>
<Pagination>
<MedlinePgn>893</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-14-893</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Reactive oxygen species (ROS) are involved in the regulation of diverse physiological processes in plants, including various biotic and abiotic stress responses. Thus, oxidative stress tolerance mechanisms in plants are complex, and diverse responses at multiple levels need to be characterized in order to understand them. Here we present system responses to oxidative stress in Populus by integrating data from analyses of the cambial region of wild-type controls and plants expressing high-isoelectric-point superoxide dismutase (hipI-SOD) transcripts in antisense orientation showing a higher production of superoxide. The cambium, a thin cell layer, generates cells that differentiate to form either phloem or xylem and is hypothesized to be a major reason for phenotypic perturbations in the transgenic plants. Data from multiple platforms including transcriptomics (microarray analysis), proteomics (UPLC/QTOF-MS), and metabolomics (GC-TOF/MS, UPLC/MS, and UHPLC-LTQ/MS) were integrated using the most recent development of orthogonal projections to latent structures called OnPLS. OnPLS is a symmetrical multi-block method that does not depend on the order of analysis when more than two blocks are analysed. Significantly affected genes, proteins and metabolites were then visualized in painted pathway diagrams.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The main categories that appear to be significantly influenced in the transgenic plants were pathways related to redox regulation, carbon metabolism and protein degradation, e.g. the glycolysis and pentose phosphate pathways (PPP). The results provide system-level information on ROS metabolism and responses to oxidative stress, and indicate that some initial responses to oxidative stress may share common pathways.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The proposed data evaluation strategy shows an efficient way of compiling complex, multi-platform datasets to obtain significant biological information.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Srivastava</LastName>
<ForeName>Vaibhav</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Obudulu</LastName>
<ForeName>Ogonna</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bygdell</LastName>
<ForeName>Joakim</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Löfstedt</LastName>
<ForeName>Tommy</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rydén</LastName>
<ForeName>Patrik</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nilsson</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ahnlund</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johansson</LastName>
<ForeName>Annika</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jonsson</LastName>
<ForeName>Pär</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Freyhult</LastName>
<ForeName>Eva</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qvarnström</LastName>
<ForeName>Johanna</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Karlsson</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Melzer</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Moritz</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Trygg</LastName>
<ForeName>Johan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hvidsten</LastName>
<ForeName>Torgeir R</ForeName>
<Initials>TR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wingsle</LastName>
<ForeName>Gunnar</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden. Gunnar.Wingsle@slu.se.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058506" MajorTopicYN="N">Cambium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055442" MajorTopicYN="N">Metabolome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015999" MajorTopicYN="N">Multivariate Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049490" MajorTopicYN="N">Systems Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24341908</ArticleId>
<ArticleId IdType="pii">1471-2164-14-893</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-14-893</ArticleId>
<ArticleId IdType="pmc">PMC3878592</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Proteomics. 2011 Aug 12;74(8):1301-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21329772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 8;280(27):25590-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15866872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):312-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17122072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 May;48(5):328-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20031434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Apr;13(4):165-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18329321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(4):557-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17059406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2010 May 7;9(5):2358-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20349988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2009 Jan;8(1):199-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19053836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2012 Jun 10;51(1):16-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22579386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Jun;16(6):300-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21482172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Sep;9(9):907-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22863883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011;7:514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21772262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1305-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Jul;5(10):2488-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15892162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Sep;7(9):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2010 Feb;9(2):271-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012;12:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22333138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jan 1;27(1):137-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21098431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2013 Mar;13(6):932-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Dec;48(5):806-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17092314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D1063-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23203882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Jul 22;19(11):1325-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12874043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2013 Jun;38(2):317-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23660666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2011 Nov;32(5):459-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chim Acta. 2013 Aug 12;791:13-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23890602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Feb;6(2):232-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2013 Feb;13(3-4):579-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23197359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 May;11(5):993-1005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9193071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 May;159(1):81-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22452856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 May;38(3):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15086807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013;14(4):7515-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23567269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May;29(5):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21516085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol. 2007;6(4):10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18154684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Aug;56(418):2085-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15955789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15199185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Oct 30;455(7217):1251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18820680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Jun;7(13):2258-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17533644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 27;100(11):6843-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12740438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):2-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 3;330(6009):1397-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21127254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(1):135-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17233796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1380-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jan;25(1):117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17187058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2003 Oct;4(10):989-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12973302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2013;9:689</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24045637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 15;15(2):311-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21348809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Mar;9(3):110-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15003233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Mol Biol. 2011 Jun;20(3):367-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21382109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Oct;9(10):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1439-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20826702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(2):364-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22356282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1848-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jun 15;26(12):i255-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20529914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Braz J Med Biol Res. 2005 Jul;38(7):995-1014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16774679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Aug;126(4):1668-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Dec;52(6):1181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17931352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(5):907-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19732382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2012 Jan 1;11(1):412-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22050424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 May;2(3):390-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2008 Apr;20(2):222-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18356035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e57118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23533573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metabolomics. 2012 Feb;8(1):143-153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22279429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jan;1843(1):163-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23545414</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ahnlund, Maria" sort="Ahnlund, Maria" uniqKey="Ahnlund M" first="Maria" last="Ahnlund">Maria Ahnlund</name>
<name sortKey="Bygdell, Joakim" sort="Bygdell, Joakim" uniqKey="Bygdell J" first="Joakim" last="Bygdell">Joakim Bygdell</name>
<name sortKey="Freyhult, Eva" sort="Freyhult, Eva" uniqKey="Freyhult E" first="Eva" last="Freyhult">Eva Freyhult</name>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
<name sortKey="Johansson, Annika" sort="Johansson, Annika" uniqKey="Johansson A" first="Annika" last="Johansson">Annika Johansson</name>
<name sortKey="Jonsson, P R" sort="Jonsson, P R" uniqKey="Jonsson P" first="P R" last="Jonsson">P R Jonsson</name>
<name sortKey="Karlsson, Jan" sort="Karlsson, Jan" uniqKey="Karlsson J" first="Jan" last="Karlsson">Jan Karlsson</name>
<name sortKey="Lofstedt, Tommy" sort="Lofstedt, Tommy" uniqKey="Lofstedt T" first="Tommy" last="Löfstedt">Tommy Löfstedt</name>
<name sortKey="Melzer, Michael" sort="Melzer, Michael" uniqKey="Melzer M" first="Michael" last="Melzer">Michael Melzer</name>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
<name sortKey="Nilsson, Robert" sort="Nilsson, Robert" uniqKey="Nilsson R" first="Robert" last="Nilsson">Robert Nilsson</name>
<name sortKey="Obudulu, Ogonna" sort="Obudulu, Ogonna" uniqKey="Obudulu O" first="Ogonna" last="Obudulu">Ogonna Obudulu</name>
<name sortKey="Qvarnstrom, Johanna" sort="Qvarnstrom, Johanna" uniqKey="Qvarnstrom J" first="Johanna" last="Qvarnström">Johanna Qvarnström</name>
<name sortKey="Ryden, Patrik" sort="Ryden, Patrik" uniqKey="Ryden P" first="Patrik" last="Rydén">Patrik Rydén</name>
<name sortKey="Srivastava, Vaibhav" sort="Srivastava, Vaibhav" uniqKey="Srivastava V" first="Vaibhav" last="Srivastava">Vaibhav Srivastava</name>
<name sortKey="Trygg, Johan" sort="Trygg, Johan" uniqKey="Trygg J" first="Johan" last="Trygg">Johan Trygg</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002568 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002568 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24341908
   |texte=   OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24341908" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020